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Abstract
In the present paper, we continue the project of systematic construction of
invariant differential operators on the example of the non-compact exceptional
algebra E7(−25). Our choice of this particular algebra is motivated by
the fact that it belongs to a narrow class of algebras, which we call
‘conformal Lie algebras’, which have very similar properties to the conformal
algebras of n-dimensional Minkowski spacetime. This class of algebras
is identified and summarized in a table. Another motivation is related to
the AdS/CFT correspondence. We give the multiplets of indecomposable
elementary representations, including the necessary data for all relevant
invariant differential operators.

PACS numbers: 02.20.Qs, 02.20.Sv, 11.25.Hf
Mathematics Subject Classification: 17B10, 22E47, 81R05

1. Introduction

1.1. Generalities

Recently, there has been more interest in the study and applications of exceptional Lie groups;
cf, e.g., [1–18]. Thus, in the development of our project [19] of systematic construction of
invariant differential operators for non-compact Lie groups, we decided to give priority to some
exceptional Lie groups. We start with the more interesting ones—the only two exceptional
Lie groups/algebras that have highest/lowest weight representations, namely, E6(−14), cf [20],
and E7(−25), which we consider in the present paper.

In fact, there are additional motivations for the choice of E7(−25), namely, it belongs
to a narrow class of algebras, which we call ‘conformal Lie algebras’, which have very
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similar properties to the conformal algebras, so(n, 2), of n-dimensional Minkowski spacetime.
Another motivation is related to the AdS/CFT correspondence.

Thus, we expand our motivations in the following subsection, where we also give the
table of the conformal Lie algebras.

Further the paper is organized as follows. In section 2, we give the preliminaries,
actually recalling and adapting facts from [19]. In section 3 we specialize to the E7(−25)

case. In section 4, we present our results on the multiplet classification of the representations
and intertwining differential operators between them. In subsection 4.1, we make a brief
interpretation of our results to relate to the usual conformal algebras.

1.2. Motivation: the class of conformal Lie algebras

The group-theoretical interpretation of the AdS/CFT correspondence [21], or more general
holography, involves two standard decompositions valid for any non-compact semi-simple
Lie group G or Lie algebra G (also super-group/algebra): the Iwasawa decomposition:

G = KAN, G = K ⊕ A ⊕ N , (1.1)

where K is the maximal compact subgroup of G, A is the Abelian simply connected subgroup
of G,1 N is a nilpotent simply connected subgroup of G preserved by the action of A (and
similarly for the algebra decomposition)2, and the Bruhat decomposition:

G = MANÑ, G = M ⊕ A ⊕ N ⊕ Ñ , (1.2)

where M is a maximal subgroup of K that commutes with A, Ñ is a subgroup conjugate to N by
the Cartan involution3. The Iwasawa decomposition is used to define induced representations
on the bulk, which in this approach is represented by the solvable subgroup AN , while the
Bruhat decomposition is used to define induced representations on the conformal boundary,
i.e., on spacetime, represented by the subgroup N [21].

The application of the group-theoretical approach in [21] for the Euclidean conformal
group G = SO(n + 1, 1) was facilitated by the fact that in the group–subgroup chain
G ⊃ K ⊃ M , the subgroups were sufficiently large: K = SO(n + 1), M = SO(n).
Thus, there was not much freedom when embedding representations, in particular, embedding
the representations of SO(n) into those of SO(n + 1).

Since the non-compact exceptional Lie algebra, E7(+7), was prominently used recently,
cf [13], we would like to apply a similar interpretation to its holography. However, there
is the problem of subgroups being not large enough. In fact, while the maximal compact
subalgebra is K = su(8), the corresponding subalgebra M is null, M = {0}, and the Bruhat
decomposition is just G = A ⊕ N ⊕ Ñ . The reason is that E7(+7) is maximally split; in fact,
it is just the restriction to the real numbers of the complex Lie algebra E7.

In fact, that would be a general problem in the case when the dimension r of the subalgebra
A, called real rank or split rank, is bigger than 1. But that also contains possible solutions of the
problem, since when r > 1 the algebra under consideration has more Bruhat decompositions;
in fact, the number of them is 2r − 1. They are written in a similar way (writing only the
algebra version):

G = M′ ⊕ A′ ⊕ N ′ ⊕ Ñ ′, (1.3)
1 Actually, A ∼= SO(1, 1) × · · · × SO(1, 1), r = dim A copies.
2 The group decomposition is global which means that each element g of G can be represented by the group
multiplication of three elements from the respective subgroups: g = kan, k ∈ K , a ∈ A, n ∈ N . Similarly, each
element, W ∈ G, can be represented as the sum: W = X ⊕ Y ⊕ Z, X ∈ K, Y ∈ A, Z ∈ N .
3 This group decomposition is almost global, which means that the decomposition g = manñ (m ∈ M, ñ ∈ Ñ)

is valid except for a subset of G of lower dimensionality. But the algebra decomposition, W = U ⊕ Y ⊕ Z ⊕ Z̃

(U ∈ M, Z̃ ∈ Ñ ), is valid as above for each element W ∈ G.
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so that M′ ⊃ M, A′ ⊂ A, N ′ ⊂ N , Ñ ′ ⊂ Ñ . Especially useful are the so-called ‘maximal’
decompositions, when dimA′ = 1, since they represent more closely the case r = 1, and
the idea that the dimensions of the bulk (with Lie algebra A′N ′) and the boundary (with Lie
algebra N ′) should differ by 1.

In the case of E7(+7), there are several suitable Bruhat decompositions [19]4:

E7(+7) = M1 ⊕ A1 ⊕ N1 ⊕ Ñ1, M1 = so(6, 6),

dimA1 = 1, dimN1 = dim Ñ1 = 33,
(1.4)

E7(+7) = M2 ⊕ A2 ⊕ N2 ⊕ Ñ2, M2 = E6(+6),

dimA2 = 1, dimN2 = dim Ñ2 = 27.
(1.5)

Due to the presence of the subalgebra so(6, 6), the first case deserves separate study.
The decomposition (1.5) is mentioned, though not in our context, in [22], where it is called
three-graded decomposition, and in [13], thus, it may be useful in applications to supergravity.
However, instead of using the Bruhat decomposition (1.5), we shall use another non-compact
real form of E7, namely, the Lie algebra E7(−25).

There are several motivations to use the non-compact exceptional Lie algebra E7(−25).
Unlike E7(+7) it has discrete series representations. Even more important is that it is one of
two exceptional non-compact groups that have highest/lowest weight representations5.

The groups that have highest/lowest weight representations are called Hermitian
symmetric spaces [23]. The corresponding non-compact Lie algebras are

su(m, n), so(n, 2), sp(2n,R), so∗(2n), E6(−14), E7(−25), (1.6)

cf, e.g., [24]. The practical criterion is that in these cases the maximal compact subalgebras
are of the form

K = K′ ⊕ so(2). (1.7)

The most widely used of these algebras are the conformal algebras so(n, 2) in n-dimensional
Minkowski spacetime. In that case, there is a maximal Bruhat decomposition that has direct
physical meaning:

so(n, 2) = Mc ⊕ Ac ⊕ Nc ⊕ Ñc,

Mc = so(n − 1, 1), dimAc = 1, dimNc = dim Ñc = n.
(1.8)

Indeed, Mc = so(n−1, 1) is the Lorentz algebra of n-dimensional Minkowski spacetime,
the subalgebraAc = so(1, 1) represents the dilatations, and the conjugated subalgebrasNc, Ñc

are the algebras of translations and special conformal transformations, both being isomorphic
to n-dimensional Minkowski spacetime6.

There are other special features which are important. In particular, the complexification
of the maximal compact subgroup coincides with the complexification of the first two factors
of the Bruhat decomposition (1.8):

KC = so(n, C) ⊕ so(2, C) = so(n − 1, 1)C ⊕ so(1, 1)C = MC

c ⊕ AC

c . (1.9)

In particular, the coincidence of the complexification of the semi-simple subalgebras
in (1.9), so(n, C) = so(n − 1, 1)C, means that the sets of finite-dimensional (non-unitary)
representations of Mc are in one-to-one correspondence with the finite-dimensional (unitary)

4 The number of maximal Bruhat decompositions is equal to r .
5 The other one is E6(−14) which we have also started to study [20].
6 The Bruhat-decomposition interpretation of the conformal subgroups/subalgebras was done first in the Euclidean
case, cf [25], then in the Minkowski case, cf [26]; for the general picture, see [27].
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Table 1. Table of conformal Lie algebras.

G K′ Mc dimR Nc

su(n, n) su(n) ⊕ su(n) sl(n, C)R n2

so(n, 2) so(n) so(n − 1, 1) n
n > 4

sp(n, R) su(n) sl(n, R) 1
2 (n + 1)n

n � 2

so∗(2n) su(n) su∗(n) 1
2 n(n − 1)

n, even, n � 6
E7(−25) e6 E6(−26) 27

representations of so(n). The latter leads to the fact that the induced representations that
we consider in this paper (and which are of the type that is mostly used in physics), cf the
following section, are representations of finite K-type [23]. The role of the Abelian factors
in (1.9) for the construction of highest/lowest weight representations was singled out first in
[28].

It turns out that some of the algebras in (1.6) share the above-mentioned special properties
of so(n, 2). That is why, in view of applications to physics, these algebras, together with
the appropriate Bruhat decompositions should be called ‘conformal Lie algebras’ (resp.
‘conformal Lie groups’ in the group setting). We display all these algebras in table 1,
where we display only the semi-simple part K′ of K, sl(n, C)R denotes sl(n, C) as a real
Lie algebra (thus, (sl(n, C)R)C = sl(n, C) ⊕ sl(n, C)), e6 denotes the compact real form
of E6, and we have imposed restrictions to avoid coincidences or inconsistency due to well-
known isomorphisms: so(1, 2) ∼= sp(1, R) ∼= su(1, 1), so(2, 2) ∼= so(1, 2) ⊕ so(1, 2),
so(3, 2) ∼= sp(2, R), so(4, 2) ∼= su(2, 2), so∗(4) ∼= so(3) ⊕ so(2, 1), so∗(8) ∼= so(6, 2).

The same class was identified from different considerations in [29], where these
groups/algebras were called ‘conformal groups of simple Jordan algebras’. It was identified
from still different considerations also in [30], where the objects of the class were called simple
spacetime symmetries generalizing conformal symmetry.

Finally, we should mention that the algebra, E7(−25), was applied to the classification of
orbits of BPS black holes in N = 2 Maxwell–Einstein supergravity theories [31].

With these motivations in mind, we continue with the algebra, E7(−25), with the following
maximal Bruhat decomposition:

E7(−25) = M′ ⊕ A′ ⊕ N ′ ⊕ Ñ ′, M′ = E6(−26),

dimA′ = 1, dimN ′ = dim Ñ ′ = 27.
(1.10)

The careful reader may note that the above Bruhat decomposition is a Wick-rotation of
the corresponding one for E7(+7), (1.5), yet there are crucial differences in their properties.

The following section contains preliminaries which are general for our programme started
in [19].

2. Preliminaries

This section can be read independently from the introduction. Let G be a semi-simple non-
compact Lie group, and K a maximal compact subgroup of G. Then we have an Iwasawa
decomposition, G = KAN , where A is the Abelian simply connected vector subgroup of G,
N is a nilpotent simply connected subgroup of G preserved by the action of A. Further, let M
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be the centralizer of A in K. Then the subgroup, P0 = MAN , is a minimal parabolic subgroup
of G. A parabolic subgroup P = M ′A′N ′ is any subgroup of G (including G itself) which
contains a minimal parabolic subgroup7.

The importance of the parabolic subgroups comes from the fact that the representations
induced from them generate all (admissible) irreducible representations of G [33]. For the
classification of all irreducible representations it is enough to use only the so-called cuspidal
parabolic subgroups, P = M ′A′N ′, singled out by the condition that rank M ′ = rankM ′ ∩ K

[34, 35], so that M ′ has discrete series representations [36]. However, often induction from
non-cuspidal parabolics is also convenient; cf [19, 37, 38].

Let ν be a (non-unitary) character of A′, ν ∈ A′∗, and let μ fix an irreducible representation
Dμ of M ′ on a vector space Vμ.

We call the induced representation, χ = IndG
P (μ ⊗ ν ⊗ 1), an elementary representation

(ER) of G [25]. (These are called generalized principal series representations (or limits
thereof) in [39].) Their spaces of functions are

Cχ = {F ∈ C∞(G, Vμ) | F(gman) = e−ν(H) · Dμ(m−1)F(g)}, (2.1)

where a = exp(H) ∈ A′, H ∈ A′, m ∈ M ′, n ∈ N ′. The representation action is the left
regular action:

(T χ (g)F)(g′) = F(g−1g′), g, g′ ∈ G. (2.2)

For our purposes we need to restrict to maximal parabolic subgroups P (so that
rank A′ = 1) that may not be cuspidal. For the representations that we consider the character
ν is parametrized by a real number d, called the conformal weight or energy.

Further, let μ fix a discrete series representation Dμ of M ′ on the Hilbert space Vμ, or the
so-called limit of a discrete series representation (cf [39]). Actually, instead of the discrete
series we can use the finite-dimensional (non-unitary) representation of M ′ with the same
Casimirs.

An important ingredient in our considerations is the highest/lowest weight representations
of G. These can be realized as (factor modules of) Verma modules V � over GC, where
� ∈ (HC)∗, HC is a Cartan subalgebra of GC, and weight � = �(χ) is determined uniquely
from χ [27]. In this setting we can consider also unitarity, which here means positivity w.r.t.
the Shapovalov form in which the conjugation is the one singling out G from GC.

Actually, since our ERs may be induced from finite-dimensional representations of M′

(or their limits) the Verma modules are always reducible. Thus, it is more convenient to use
generalized Verma modules, Ṽ �, such that the role of the highest/lowest weight vector v0 is
taken by the (finite-dimensional) space Vμv0. For the generalized Verma modules (GVMs)
the reducibility is controlled only by the value of the conformal weight d. Relatedly, for the
intertwining differential operators only the reducibility w.r.t. non-compact roots is essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs with
the same Casimirs in sets called multiplets [27, 40]. The multiplet corresponding to the fixed
values of the Casimirs may be depicted as a connected graph, the vertices of which correspond
to the reducible ERs and the lines between the vertices correspond to intertwining operators8.
The explicit parametrization of the multiplets and of their ERs is important for understanding
the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the intertwining
differential operators. Actually, the data for each intertwining differential operator consist of

7 The number of non-conjugate parabolic subgroups is 2r , where r = rank A; cf, e.g., [32].
8 For simplicity, only the operators which are not compositions of other operators are depicted.
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the pair (β,m), where β is a (non-compact) positive root of GC, m ∈ N, such that the BGG
[41] Verma module reducibility condition (for highest weight modules) is fulfilled:

(� + ρ, β∨) = m, β∨ ≡ 2β/(β, β). (2.3)

When (2.3) holds then the Verma module with shifted weight V �−mβ (or Ṽ �−mβ for GVM and
β non-compact) is embedded in the Verma module V � (or Ṽ �). This embedding is realized by
a singular vector vs determined by a polynomial Pm,β(G−) in the universal enveloping algebra
(U(G−))v0, G− is the subalgebra of GC generated by the negative root generators [42]. More
explicitly, [27], vs

m,β = Pm,βv0 (or vs
m,β = Pm,βVμv0 for GVMs).9 Then there exists [27] an

intertwining differential operator,

Dm,β : Cχ(�) −→ Cχ(�−mβ), (2.4)

given explicitly by

Dm,β = Pm,β(Ĝ−), (2.5)

where Ĝ− denotes the right action on the functions F ; cf (2.1).

3. The non-compact Lie algebra E7(−25)

Let G = E7(−25). The maximal compact subgroup is K ∼= e6 ⊕ so(2), dimR P = 54,
dimR N = 51. This real form has discrete series representations and highest/lowest weight
representations.

The split rank is equal to 3, while M ∼= so(8).
The Satake diagram is [44]

•α2

|
◦
α1

—— •
α3

—— •
α4

—— •
α5

—— ◦
α6

—— ◦
α7

.
(3.1)

Thus, the reduced root system is presented by a Dynkin–Satake diagram looking like the C3

Dynkin diagram:

◦
λ1

�⇒ ◦
λ2

—— ◦
λ3

, (3.2)

but the short roots have multiplicity 8 (the long ones have multiplicity 1). Going to the C3

diagram we drop the black nodes (they give rise to M), while α1, α6, α7, are mapped to
λ1, λ2, λ3, resp., of (3.2).

We choose a maximal parabolic P = M′A′N ′ such that A′ ∼= so(1, 1), while the factor
M′ has the same finite-dimensional (non-unitary) representations as the finite-dimensional
(unitary) representations of the semi-simple subalgebra of K, i.e., M′ = E6(−6); cf [19]. Thus,
these induced representations are representations of finite K-type [23]. In a related way, the
number of ERs in the corresponding multiplets is equal to |W(GC,HC)|/|W(KC,HC)| = 56,
cf [45], where H is a Cartan subalgebra of both G and K. Note also that KC ∼= M′C ⊕ A′C.
Finally, note that dimR N ′ = 27.

We label the signature of the ERs of G as follows:

χ = {n1, . . . , n6; c}, nj ∈ N, c = d − 9, (3.3)

9 For explicit expressions for singular vectors we refer to [43].
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where the last entry of χ labels the characters of A′, and the first six entries are labels of
the finite-dimensional non-unitary irreducible representations (irreps) of M′ (or of the finite-
dimensional unitary irreps of e6).

The reason to use the parameter c instead of d is that the parametrization of the ERs in
the multiplets is given in a simpler way, as we shall see.

Further, we need the root system of the complex algebra E7. With the Dynkin diagram
enumerating the simple roots αi as in (3.1), the positive roots are: first there are 21 roots
forming the positive roots of sl(7) with simple roots α1, α3, α4, α5, α6, α7, then 21 roots
which are roots of the E6 subalgebra and include the non-sl(7) root α2 :

α2, α2 + α4, α2 + α4 + α3, α2 + α4 + α5, α2 + α4 + α3 + α5,

α2 + α4 + α3 + α1, α2 + α4 + α5 + α6, α2 + α4 + α3 + α5 + α1,

α2 + α4 + α3 + α5 + α6, α2 + α4 + α3 + α5 + α1 + α6, α2 + 2α4 + α3 + α5,

α2 + 2α4 + α3 + α5 + α1, α2 + 2α4 + α3 + α5 + α6, α2 + 2α4 + α3 + α5 + α1 + α6, (3.4)

α2 + 2α4 + 2α3 + α5 + α1, α2 + 2α4 + α3 + 2α5 + α6, α2 + 2α4 + 2α3 + α5 + α1 + α6,

α2 + 2α4 + α3 + 2α5 + α1 + α6, α2 + 2α4 + 2α3 + 2α5 + α1 + α6,

α2 + 3α4 + 2α3 + 2α5 + α1 + α6, 2α2 + 3α4 + 2α3 + 2α5 + α1 + α6,

finally, there are the following 21 roots including the non-E6 root α7:

α2 + α4 + α5 + α6 + α7, α2 + α4 + α3 + α5 + α6 + α7,

α2 + α4 + α3 + α5 + α1 + α6 + α7,

α2 + 2α4 + α3 + α5 + α6 + α7, α2 + 2α4 + α3 + α5 + α1 + α6 + α7,

α2 + 2α4 + α3 + 2α5 + α6 + α7, α2 + 2α4 + 2α3 + α5 + α1 + α6 + α7,

α2 + 2α4 + α3 + 2α5 + α1 + α6 + α7, α2 + 2α4 + 2α3 + 2α5 + α1 + α6 + α7,

α2 + 3α4 + 2α3 + 2α5 + α1 + α6 + α7, 2α2 + 3α4 + 2α3 + 2α5 + α1 + α6 + α7,

α2 + 2α4 + α3 + 2α5 + 2α6 + α7, (3.5)

α2 + 2α4 + α3 + 2α5 + α1 + 2α6 + α7, α2 + 2α4 + 2α3 + 2α5 + α1 + 2α6 + α7,

α2 + 3α4 + 2α3 + 2α5 + α1 + 2α6 + α7, 2α2 + 3α4 + 2α3 + 2α5 + α1 + 2α6 + α7,

α2 + 3α4 + 2α3 + 3α5 + α1 + 2α6 + α7, 2α2 + 3α4 + 2α3 + 3α5 + α1 + 2α6 + α7,

2α2 + 4α4 + 2α3 + 3α5 + α1 + 2α6 + α7,

2α2 + 4α4 + 3α3 + 3α5 + α1 + 2α6 + α7,

2α2 + 4α4 + 3α3 + 3α5 + 2α1 + 2α6 + α7 = α̃,

where α̃ is the highest root of the E7 root system.
The differential intertwining operators that give the multiplets correspond to the non-

compact roots, and since we shall use the latter extensively, we introduce more compact
notation for them. Namely, the nonsimple roots will be denoted in a self-explanatory way as
follows:

αij = αi + αi+1 + · · · + αj , αi,j = αi + αj , i < j,

αij,k = αk,ij = αi + αi+1 + · · · + αj + αk, i < j,
(3.6)

αij,km = αi + αi+1 + · · · + αj + αk + αk+1 + · · · + αm, i < j, k < m,

αij,km,4 = αi + αi+1 + · · · + αj + αk + αk+1 + · · · + αm + α4, i < j, k < m,

i.e., the non-compact roots will be written as

α7, α67, α57, α47, α37, α1,37, (3.7a)

7
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α2,47, α27, α17, α27,4, α17,4, α27,45,

α17,34, α17,45, α27,46, α17,35, α17,46, α17,36,
(3.7b)

α17,35,4, α17,25,4, α17,36,4, α17,26,4,

α17,36,45, α17,26,45, α17,26,45,4, α17,26,35,4, α17,16,35,4 = α̃,

where the first six roots in (3.7a) are from the sl(7) subalgebra, and the 21 in (3.7b) are those
from (3.5).

Further, we give the correspondence between the signatures χ and the highest weight �.
The connection is through the Dynkin labels:

mi ≡ (
� + ρ, α∨

i

) = (� + ρ, αi), i = 1, . . . , 7, (3.8)

where � = �(χ), ρ is half the sum of the positive roots of GC, and αi denotes the simple
roots of GC. The explicit connection is

ni = mi, c = − 1
2 (nα̃ + n7) = − 1

2 (2n1 + 2n2 + 3n3 + 4n4 + 3n5 + 2n6 + 2n7). (3.9)

We shall use also the so-called Harish-Chandra parameters:

mβ ≡ (� + ρ, β), (3.10)

where β is any positive root of GC. These parameters are redundant, since obviously they
are expressed in terms of the Dynkin labels; however, some statements are best formulated in
their terms10.

There are several types of multiplets: the main type, which contains the maximal
number of ERs/GVMs, the finite-dimensional and the discrete series representations, and
some reduced types of multiplets.

In the following section, we give the main type of multiplets and the main reduced type.

4. Multiplets

4.1. The main type of multiplets

The multiplets of the main type are in one-to-one correspondence with the finite-dimensional
irreps of E7, i.e., they will be labelled by the seven positive Dynkin labels mi ∈ N. As we
mentioned, it turns out that each such multiplet contains 56 ERs/GVMs whose signatures can
be given in the following pair-wise manner:

χ±
0 = {

(m1,m2,m3,m4,m5,m6)
±;± 1

2 (mα̃ + m7)
}
,

χ±
a = {

(m1,m2,m3,m4,m5,m67)
±;± 1

2 (mα̃ − m7)
}
,

χ±
b = {

(m1,m2,m3,m4,m56,m7)
±;± 1

2 (mα̃ − m67)
}
,

χ±
c = {

(m1,m2,m3,m45,m6,m7)
±;± 1

2 (mα̃ − m57)
}
,

χ±
d = {

(m1,m2,4,m34,m5,m6,m7)
±;± 1

2 (mα̃ − m47)
}
,

χ±
e = {

(m1,m4,m24,m5,m6,m7)
±;± 1

2 (mα̃ − m2,47)
}
,

χ±
e′ = {

(m1,3,m24,m4,m5,m6,m7)
±;± 1

2 (mα̃ − m37)
}
,

χ±
f = {

(m1,3,m34,m2,4,m5,m6,m7)
±;± 1

2 (mα̃ − m27)
}
,

χ±
f ′ = {

(m3,m14,m4,m5,m6,m7)
±;± 1

2 (mα̃ − m1,37)
}
,

χ±
g = {

(m1,34,m3,m2,m45,m6,m7)
±;± 1

2 (mα̃ − m27,4)
}
,

10 Clearly, both the Dynkin and Harish-Chandra labels have their origin in the BGG reducibility condition (2.3).
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χ±
g′ = {

(m3,m1,34,m2,4,m5,m6,m7)
±;± 1

2 (mα̃ − m17)
}
,

χ±
h = {

(m1,35,m3,m2,m4,m56,m7)
±;± 1

2 (mα̃ − m27,45)
}
,

χ±
h′ = {

(m34,m1,3,m2,m45,m6,m7)
±;± 1

2 (mα̃ − m17,4)
}
,

χ±
j = {

(m1,36,m3,m2,m4,m5,m67)
±;± 1

2 (mα̃ − m27,46)
}
,

χ±
j ′ = {

(m35,m1,3,m2,m4,m56,m7)
±;± 1

2 (mα̃ − m17,45)
}
,

χ±
j ′′ = {

(m4,m1,m2,m35,m6,m7)
±;± 1

2 (mα̃ − m17,34)
}
,

χ±
k = {

(m1,37,m3,m2,m4,m5,m6)
±;± 1

2 (mα̃ − m27,46)
}
,

χ±
k′ = {

(m36,m1,3,m2,m4,m5,m67)
±;± 1

2 (mα̃ − m17,46)
}
,

χ±
k′′ = {

(m45,m1,m2,m34,m56,m7)
±;± 1

2 (mα̃ − m17,35)
}
,

χ±
	 = {

(m37,m1,3,m2,m4,m5,m6)
±;± 1

2m25,34
}
,

χ±
	′ = {

(m46,m1,m2,m34,m5,m67)
±;± 1

2m2,45,4
}
,

χ±
	′′ = {

(m5,m1,m2,4,m3,m46,m7)
±;± 1

2m2,56
}
,

χ±
m = {

(m47,m1,m2,m34,m5,m6)
±;± 1

2m2,45,4
}
,

χ±
m′ = {

(m56,m1,m2,4,m3,m45,m67)
±;± 1

2m2,5
}
,

χ±
m′′ = {

(m5,m1,m4,m3,m2,46,m7)
±;± 1

2 (m56 − m2)
}
,

χ±
n = {

(m57,m1,m2,4,m3,m45,m6)
±;± 1

2m2,5
}
,

χ±
n′ = {

(m6,m1,m2,45,m3,m4,m57)
±;± 1

2 (m2 − m5)
}
,

χ±
n′′ = {

(m56,m1,m4,m3,m2,45,m67)
±;± 1

2 (m5 − m2)
}
, (4.1)

where we have used for the numbers mβ = (�(χ) + ρ, β), the same compact notation as in
(3.6) for the roots β, and the notation (· · ·)± employs the natural conjugation of the subalgebra
E6, more precisely:

(n1, n2, n3, n4, n5, n6)
− = (n1, n2, n3, n4, n5, n6),

(n1, n2, n3, n4, n5, n6)
+ = (n1, n2, n3, n4, n5, n6)

E6 .= (n6, n2, n5, n4, n3, n1).
(4.2)

Note that in (4.1) the last entries with sign plus (resp. minus) are positive (resp. negative),
except in the cases χ±

m , χ±
n , χ±

n′ .
The ERs in the multiplet are related by intertwining integral and differential operators.

The integral operators were introduced by Knapp and Stein [46]. In fact, these operators are
defined for any ER, not only for the reducible ones, the general action being

GKS : Cχ −→ Cχ ′ ,

χ = {n1, n2, n3, n4, n5, n6; c}, (4.3)

χ ′ = {(n1, n2, n3, n4, n5, n6)
E6;−c} = {n6, n2, n5, n4, n3, n1;−c}.

Obviously, the pairs in (4.1) are related by Knapp–Stein integral operators, i.e.,

GKS : Cχ∓ −→ Cχ±. (4.4)

The action on the signatures is also called restricted Weyl reflection, since it represents
the nontrivial element of the two-element restricted Weyl group which arises canonically with
every maximal parabolic subalgebra11.

Matters are arranged so that in every multiplet only the ER with signature χ−
0

contains a finite-dimensional non-unitary subrepresentation in a finite-dimensional subspace E .

11 Generically, the Knapp–Stein operators can be normalized so that indeed GKS ◦GKS = IdCχ . However, this usually
fails exactly for the reducible ERs that form the multiplets; cf, e.g., [25].
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The latter corresponds to the finite-dimensional irrep of E7 with signature {m1, . . . , m7}. The
subspace E is annihilated by the operator G+, and is the image of the operator G−. The
subspace E is also annihilated by the intertwining differential operator acting from χ−

0 to χ−
b

(more about this operator below). When all mi = 1 then dim E = 1, and in that case E is also
the trivial one-dimensional UIR of the whole algebra E7(−25). Furthermore, in that case the
conformal weight is zero: d = 9 + c = 9 − 1

2 (mα̃ + m7)|mi=1 = 0.
Analogously, in every multiplet only the ER with signature χ+

0 contains the holomorphic
discrete series representation. This is guaranteed by the criterion [36] that for such an ER
all Harish-Chandra parameters for non-compact roots must be negative, i.e., in our situation,
nα < 0, for α from (3.7). (That this holds for our χ+

0 can easily be checked using the
signatures (4.1).)

In fact, the Harish-Chandra parameters are reflected in the division of the ERs into χ−

and χ+: for the χ− modules less than half of the 27 non-compact Harish-Chandra parameters
are negative (none for χ−

0 , 13 for χ−
n , χ−

n′ , χ−
n′′ ), while for the χ+ modules more than half of

the non-compact 27 Harish-Chandra parameters are negative (27 for χ+
0 , 14 for χ+

n , χ+
n′ , χ+

n′′ ).
In fact, as in the parenthesized examples, it is true that the sum of the number of negative
Harish-Chandra parameters for any pair χ± is equal to 27.

Note that the ER χ+
0 also contains the conjugate anti-holomorphic discrete series. The

direct sum of the holomorphic and the anti-holomorphic representation is realized in an
invariant subspace D of the ER χ+

0 . That subspace is annihilated by the operator G−, and is
the image of the operator G+.

Note that the corresponding lowest weight GVM is infinitesimally equivalent only to
the holomorphic discrete series, while the conjugate highest weight GVM is infinitesimally
equivalent to the anti-holomorphic discrete series. The conformal weight of the ER χ+

0 has
the restriction d = 9 + c = 9 + 1

2 (mα̃ + m7) � 18.
The intertwining differential operators correspond to non-compact positive roots of the

root system of E7, cf [27], i.e., in the current context, the roots given in (3.7).
The multiplets are given explicitly in figure 1, where we use the notation �± = �(χ±).

Each intertwining differential operator is represented by an arrow accompanied by a symbol
ij ...k encoding the root βj...k and the number mβj...k

which is involved in the BGG criterion.
This notation is used to save space, but it can be used due to the fact that only intertwining
differential operators which are non-composite are displayed, and that the data β,mβ which are
involved in the embedding V � −→ V �−mβ,β turn out to involve only the mi corresponding
to simple roots, i.e., for each β,mβ there exists i = i(β,mβ,�) ∈ {1, . . . , 7}, such that
mβ = mi . Hence the data βj...k , mβj...k

are represented by ij ...k on the arrows.
The pairs �± are symmetric w.r.t. to the bullet in the middle of the figure, and the dashed

line separates the �− modules from the �+ modules.

Interpretation: since the relation to the usual conformal algebras in n-dimensional Minkowski
spacetime is one of our main motivations to study E7(−25), we would like to mention briefly
some analogies, using an exposition that is written in the same context, cf [38], though the
results are contained in much older work [25, 26, 47, 48]; see also [27]. If we take the
most basic example when the inducing E6-representation in the ERs χ±

0 is the trivial one:
(m1,m2,m3,m4,m5,m6) = (1, 1, 1, 1, 1, 1), then the conformal fields represented by the
ERs χ±

0 are scalar, while those represented by the ERs χ±
a are 27-dimensional vectors. There

are invariant differential operators depicted in figure 1:

Dm7,α7 : Cχ−
0

−→ Cχ−
a
, (4.5a)

Dm7,α17,16,35,4 : Cχ+
a

−→ Cχ+
0
. (4.5b)
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Λ−
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b

557
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c
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337
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337 22,47 11,37
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f
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f

427
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g
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527,4
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0

Figure 1. Main type.

Both are equations of order m7. When the last free parameter m7 = 1 then the ER χ−
a is the

analogue of the vector potential Aν , while the ER χ+
a is the analogue of the current Jν . Then

the equations in (4.5) are linear and can be written as

11
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∂νφ = Aν, φ ∈ Cχ−
0
, A ∈ Cχ−

a
, (4.6a)

27∑
ν=1

∂νJν = �, � ∈ Cχ+
0
, J ∈ Cχ+

a
. (4.6b)

When the parameter m7 > 1, then the analogues of (4.5) are also treated in the older references
cited above (for instance, (4.5b) would be an equation of partial conservation). In all cases, we
stress that these are invariant differential equations, on- and off-shell. Naturally, this is only
a glimpse at the analogies with the usual conformal case, much more will be said elsewhere,
[49]. ♦

In the following subsection, we shall consider the main type of reduced multiplets.

4.2. The main type of reduced multiplet

The multiplets of reduced type R7 contain 42 ERs/GVMs and may be obtained formally from
the main type by setting m7 = 0. Their signatures are given explicitly by

χ±
0 = {

(m1,m2,m3,m4,m5,m6)
±;± 1

2mα̃

}
,

χ±
b = {

(m1,m2,m3,m4,m56, 0)±;± 1
2 (mα̃ − m6)

}
,

χ±
c = {

(m1,m2,m3,m45,m6, 0)±;± 1
2 (mα̃ − m56)

}
,

χ±
d = {

(m1,m2,4,m34,m5,m6, 0)±;± 1
2 (mα̃ − m46)

}
,

χ±
e = {

(m1,m4,m24,m5,m6, 0)±;± 1
2 (mα̃ − m2,46)

}
,

χ±
e′ = {

(m1,3,m24,m4,m5,m6, 0)±;± 1
2 (mα̃ − m36)

}
,

χ±
f = {

(m1,3,m34,m2,4,m5,m6, 0)±;± 1
2 (mα̃ − m26)

}
,

χ±
f ′ = {

(m3,m14,m4,m5,m6, 0)±;± 1
2 (mα̃ − m1,36)

}
,

χ±
g = {

(m1,34,m3,m2,m45,m6, 0)±;± 1
2 (mα̃ − m26,4)

}
,

χ±
g′ = {

(m3,m1,34,m2,4,m5,m6, 0)±;± 1
2 (mα̃ − m16)

}
,

χ±
h = {

(m1,35,m3,m2,m4,m56, 0)±;± 1
2 (mα̃ − m26,45)

}
,

(4.7)
χ±

h′ = {
(m34,m1,3,m2,m45,m6, 0)±;± 1

2 (mα̃ − m16,4)
}
,

χ±
j = {

(m1,36,m3,m2,m4,m5,m6)
±;± 1

2 (mα̃ − m26,46)
}
,

χ±
j ′ = {

(m35,m1,3,m2,m4,m56, 0)±;± 1
2 (mα̃ − m16,45)

}
,

χ±
j ′′ = {

(m4,m1,m2,m35,m6, 0)±;± 1
2 (mα̃ − m16,34)

}
,

χ±
k′′ = {

(m45,m1,m2,m34,m56, 0)±;± 1
2 (mα̃ − m16,35)

}
,

χ±
	 = {

(m36,m1,3,m2,m4,m5,m6)
±;± 1

2 (mα̃ − m16,46)
}
,

χ±
m = {

(m46,m1,m2,m34,m5,m6)
±;± 1

2m2,45,4
}
,

χ±
	′′ = {

(m5,m1,m2,4,m3,m46, 0)±;± 1
2m2,56

}
,

χ±
m′′ = {

(m5,m1,m4,m3,m2,46, 0)±;± 1
2 (m56 − m2)

}
,

χ±
n = {

(m56,m1,m2,4,m3,m45,m6)
±;± 1

2m2,5
}

χ±
n′′ = {

(m4,m3,m2,45,m1,m6,m56)
±;± 1

2 (m5 − m2)
}
.

Here the ER χ+
0 contains limits of the (anti)holomorphic discrete series representations.

This is guaranteed by the fact that for this ER all Harish-Chandra parameters for non-compact
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Figure 2. Reduced type R7.

roots are non-positive, i.e., nα � 0, for α from (3.7). The conformal weight has the restriction
d = 9 + c = 9 + 1

2mα̃ � 17.
There are other limiting cases, where there are zero entries for the first six ni values.

In these cases, the induction procedure would not use finite-dimensional irreps of the E6

subgroup. The corresponding ERs would not have direct physical meaning; however, the
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fact that they are together with the physically meaningful ERs has important bearing on the
structure of the latter.

Altogether, the analysis of the Harish-Chandra parameters reveals the following. For any
ER there is exactly one Harish-Chandra parameter (counting all, not only the non-compact)
that is zero. The compact ones are seen in the list above. The non-compact are as follows:

χ−
0 : n7 = 0, χ+

0 : nα̃ = 0,

χ±
j , χ±

	 , χ±
m , χ±

n , χ±
n′′ , : n27,46 = 0.

(4.8)

As in the main type, for the χ− modules less than half of the 27 non-compact Harish-Chandra
parameters are negative (none for χ−

0 , 13 for χ−
n′′ ), while for the χ+ modules—except χ+

n′′—
more than half of the non-compact 27 Harish-Chandra parameters are negative (26 for χ+

0 , 14
for χ+

n ). In fact, it is true that for any pair χ± the sum of the number of negative Harish-Chandra
parameters is equal to 26.

These multiplets are depicted in figure 2. The Weyl-conjugated pairs �± are symmetric
w.r.t. to the bullet in the middle of the figure, and the dashed line separates the �− modules
from the �+ modules. The fact that the pair, χ−

n′′ , χ+
n′′ , sits on the dashed line signifies the fact

that for these two ERs the number of negative non-compact Harish-Chandra parameters equals
the number of positive non-compact Harish-Chandra parameters, and that equals 13. Note
also that the ten ERs for which n27,46 = 0 holds, cf (4.8), are situated on two conjugated lines.

There are many other types of reduced multiplets, and their study may be done as in the
case of E6(−14) in [20], but for E7(−25) it will need much more space, so we leave it for a future
publication.

5. Outlook

In the present paper, we continued the programme outlined in [19] on the example of the non-
compact group E7(−25). Similar explicit descriptions are planned for the other non-compact
groups, in particular those with highest/lowest weight representations. We also plan to extend
these considerations to the supersymmetric cases and also to the quantum group setting. Such
considerations are expected to be very useful for applications to string theory and integrable
models; cf, e.g., [50].

In our further plans it will be very useful that (as in [19]) we follow a procedure in
representation theory in which intertwining differential operators appear canonically [27] and
in which the procedure has been generalized to the supersymmetry setting [51, 52] and to
quantum groups [53]. (For more references, cf [19].)
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